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Abstract
At variance with what happens in metals, the electronic charge in insulators
cannot flow freely under an applied dc field, and undergoes instead static
polarization. These two features arise from the difference in nature of the
excitation spectra, but also from the difference in organization of the electrons
in their ground state: electrons are localized in insulators and delocalized in
metals. Such localization, however, is hidden in a rather subtle way in the
many-body wavefunction. We review the theory of the insulating state, on
the basis of electron localization, addressing on the same basis all insulators:
either independent electron or correlated, either crystalline or disordered. The
starting point is a 1964 milestone paper by Kohn. Significant advances occurred
from 1999 onwards. These advances are deeply rooted in the modern theory
of polarization: localization and polarization can be regarded as two aspects
of the same phenomenon, and stem from essentially the same formalism.
Starting from the many-body ground wavefunction, one defines a dimensionless
complex number which vanishes in metals and is finite in insulators; in the latter
case, its phase (the Berry phase) yields the macroscopic polarization, while its
modulus measures localization. Conductivity features are addressed within the
same theoretical scheme.

1. Introduction

For the present purposes, materials are conveniently divided into just two classes: insulators
and metals. We use the terms here in a loose sense, as synonyms for nonconducting and
conducting: an insulator is distinguished from a metal by its vanishing conductivity at low
temperature and low frequency. In contrast to what happens in metals, the electronic charge in
insulators cannot flow freely under an applied dc field, and instead undergoes static polarization.
We focus here on purely electronic phenomena, where the ions are considered ‘clamped’ and
the temperature is strictly zero. The properties of interest, therefore, only relate to electronic
wavefunctions.
1 Permanent address.
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Figure 1. A schematic view of insulators and metals in classical physics. Top sketch: the Lorentz
model for insulators, where each electron is tied (by a harmonic force) to a particular centre. Bottom
sketch: the Drude model for metals, where electrons roam freely over macroscopic distances,
hindered only by atomic scattering potentials.

(This figure is in colour only in the electronic version)

Within classical physics, the qualitative difference between insulators and metals is
attributed to the natures of the electronic charge, as sketched in figure 1: either ‘bound’ (the
Lorentz model for insulators) or ‘free’ (the Drude model for metals). In other words, electrons
are localized in insulators and delocalized in metals. Switching to quantum physics, this kind
of sharp distinction is apparently lost. Most textbooks [1, 2] address the insulating/metallic
behaviour by means of band structure theory, focusing on the position of the Fermi level of the
given material: either in a band gap (insulators), or across a band (metals), as in figure 2. This
picture explains the insulating/metallic behaviour by means of the spectrum of the system,
considering the nature of the low-lying electronic excitations. But the qualitative difference
in the dc conductivity also reflects a difference in the organization of the electrons in their
ground state, as first emphasized by Kohn in 1964 [3, 4]. The outstanding message of this
article is that even within quantum mechanics the cause for insulating behaviour is electron
localization. Such localization, however, manifests itself in a very subtle way; in fact the
electrons in a condensed system appear, from several viewpoints, about equally delocalized in
insulators and in metals.

The challenge is to show how electron localization can be detected and measured in
the ground wavefunction of a many-electron system. The difference between localized and
delocalized must be, in the thermodynamic limit, a sharp one. The first solution to this problem
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Insulator Metal

Figure 2. Electronic energy bands in a mean-field potential for a crystalline system. Insulators
and metals are distinguished by the position of the Fermi level; this is the traditional textbook view
of their qualitative difference.

was provided by Kohn in his original 1964 paper. Much later, starting since 1999, the problem
was reconsidered and a solution different from Kohn’s, and complementary to it, was found;
this is the main theme of the present review.

Why do we need a theory of the insulating state different—and formally more complex—
than the familiar one sketched in figure 2? The point is that such a picture applies only
to a crystalline material, within the independent-electron approximation [1]—a limited class
of insulators indeed. Noncrystalline insulators do in fact exist, and the electron–electron
interaction is a fact of nature: in some materials the insulating behaviour is dominated by
disorder (Anderson insulators); in some other materials the insulating behaviour is dominated
by electron correlation (Mott insulators). Even more exotic insulators are also known, e.g. the
excitonic insulators [4].

For a large number of insulators the band picture is then grossly inadequate. Instead,
the theory of the insulating state reviewed here, and based on electron localization, addresses
all insulators on the same basis. Even in the very special case of figure 2 the ground state
is indeed localized (in a manner defined below), despite the fact that the eigenfunctions of
the independent-particle Hamiltonian underlying figure 2 are of the (delocalized) Bloch form
both for insulators and for metals—and qualitatively rather similar. The kind of localization
addressed in the present work is not a feature characterizing the individual single-particle
orbitals; it is, instead, a global property of the many-body ground wavefunction as a whole.

The modern approach to electron localization is deeply rooted in the theory of polarization,
developed from 1992 onwards [5–13], and based on Berry’s phases [14–16]: there is
in fact an outstanding phenomenological link between macroscopic polarization and the
insulating state of matter. Suppose we expose a finite macroscopic sample to an electric
field, say by inserting it in a charged capacitor. Then the induced macroscopic polarization
is qualitatively different in metals and insulators. In the former materials, polarization is
trivial: universal, material independent, due to surface phenomena only (screening by free
carriers). Therefore polarization in metals is not a bulk phenomenon. The opposite is true for
insulators: macroscopic polarization is a nontrivial, material-dependent, bulk phenomenon.
We can therefore characterize an insulator, in very general terms, as a material whose ground
wavefunction sustains a bulk macroscopic polarization whenever the electronic Hamiltonian is
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noncentrosymmetric. If the Hamiltonian is instead centrosymmetric, the polarization vanishes
but remains a well-defined bulk property, at variance with the metallic case. On the theoretical
side, the concept itself of macroscopic polarization in quantum physics has long evaded
even a correct definition; most textbooks contain incorrect statements. The modern theory
revolutionizes both the very definition of the relevant bulk observable, and the ways to compute
it in real solids. Much novel and deep physical insight has been gathered in recent years from
calculations based on the Berry phase theory, both for real materials and for model systems [17].

The modern theory of electron localization in the insulating state was developed in 1999
in a short paper by Resta and Sorella [18]. Its major message is that, since polarization and
localization are two manifestations of the same phenomenon, they both stem from essentially
the same formalism. This work was followed in 2000 by a comprehensive paper by Souza
et al [19], where important additional results are found, in particular relating localization to
conductivity. In the following, we will refer to these papers as RS and SWM, respectively.
Other related papers have appeared as well [20–24]. The major part of the present review is
based on RS and SWM, although the presentation follows a different logical path to both of
them: a more general perspective is adopted, and additional unpublished results are included.

The plan of this work is as follows. In section 2 I introduce some notation, definitions,
and general results which will be used throughout. The formalism addresses all condensed
systems (either crystalline or disordered) with periodic boundary conditions (PBC), and deals
with both correlated- and independent-electron wavefunctions. In section 3 I outline the
drawback which has long plagued the theory of macroscopic polarization, and the modern
solution of the problem, based on a Berry’s phase. The same main ingredient as was used
therein, namely, the many-body phase operator, is used in the following to address electron
localization as well. In section 4 I address the other property that, in addition to macroscopic
polarization, discriminates between insulators and metals: conductivity. In section 5, after
reviewing the historic work of Kohn, I illustrate the modern approach to electron localization
in insulators, as it emerges from RS and SWM. In section 6 I discuss in detail how the RS
localization is measured in a crystalline system of independent electrons (finite in insulators,
diverging in metals) and in an explicitly correlated model system.

2. Wavefunction, orbitals, and density matrices

2.1. Periodic boundary conditions

When dealing with condensed matter physics, one is generally interested in evaluating physical
quantities—either intensive or extensive—in the thermodynamic limit. Such quantities will
also be called ‘bulk properties’ in the following. They are defined by taking the limit of a very
large system, keeping the density (and any other relevant parameter) constant. On practical
grounds, it is enough to watch that the size of the system is larger than the relevant correlation
lengths.

Suppose we address a crystalline solid: the thermodynamic limit could in principle be
approached by studying a ‘molecule’, or cluster, of increasing size and suitably chosen shape,
such that the surface-to-volume ratio goes to zero and the genuinely bulk properties emerge in
the limit. While any N -electron wavefunction becomes an ill-defined mathematical object in
the N → ∞ limit, the reduced density matrices [25] do converge to well-defined quantities in
the inner region of the cluster, thus yielding the bulk electronic properties of interest. Notice
that the ‘molecules’ are thought of as isolated in space; at any finite N the ground wavefunction
is therefore bound, that is square integrable and exponentially decaying; the density matrices
are bound as well.
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However, the finite-molecule approach is definitely not the most convenient one. When
addressing the bulk properties of any condensed system (either crystalline, amorphous, or
liquid) one adopts almost invariably Born–von Kármán PBC. The scope of PBC is much
wider than electronic structure, since they apply to classical simulations, lattice dynamics, and
other fields as well. As a general feature, it is postulated that any genuine bulk property of
a condensed system cannot depend on the boundary conditions adopted, and therefore in the
thermodynamic limit the finite-molecule approach and the PBC approach lead in principle to
the same result. There are however very good reasons for preferring the latter to the former, in
order both (i) to derive analytical results and (ii) to perform actual calculations. As regards (i),
let me mention that PBC are mandatory, at the most elementary level [1, 2], e.g. to define the
Fermi surface or to prove the Bloch theorem; as regards (ii), let me just observe that with PBC,
even a system of finite size has no surface by construction, therefore being a better approximant
to its corresponding infinite-size limit.

Choosing any kind of boundary conditions for the wavefunction is tantamount to choosing
the Hilbert space where the solutions of Schrödinger’s equation are defined. The choice of
the Hilbert space, in turn, has very remarkable consequences for some quantum-mechanical
observables and for the corresponding operators. Much of the focus of the present work
will be on the position (or dipole) operator and higher powers thereof, which indeed has
many nontrivial and somewhat counterintuitive features with PBC. The matter has remained
rather obscure until very recently. The light came from the development of the modern
theory of polarization, dating from 1992 [5–10], and whose ultimate developments are very
recent [12, 13, 16, 18, 19].

2.2. Wavefunction and orbitals

In this work we adopt PBC throughout, with the only exception of section 4.2. For the sake
of simplicity we assume that we have N three-dimensional electrons, with even N , in a cubic
box of size L and volume L3. This choice makes the formulation simplest, and is also the
most practical one for amorphous and liquid materials. As for crystalline solids, our choice is
the most convenient one for cubic solids, while for crystals of lower symmetry other choices
are more convenient (see below).

We call xi ≡ (ri , σi) the space and spin coordinates of the ith electrons. The many-body
ground wavefunction �0 is an antisymmetric function of the xi-variables, and normalizes to
one when integrated in the hypercube:∫

dx1 dx2 · · · dxN |�0(x1, x2, . . . xN)|2 = 1. (1)

Here integration over each dxi means summing over the spin coordinates and integrating over
the periodicity cell of volume L3. In the following, this cell will be called the ‘supercell’.

Choosing PBC is equivalent to imposing that the wavefunction is periodic, with period
L, for translations of the electronic coordinates in each spatial direction and for each electron
independently. All the physical quantities are obtained by integration in the hypercube; it is
sometimes convenient to imagine that the many-electron system is periodically repeated and
that the external potential is periodic as well. Notice that for any finite value of L the whole
spectrum is discrete.

In the special case of noninteracting electrons, the exact wavefunction is the
antisymmetrized product (Slater determinant) of N single-particle spin orbitals. In the simple
cases of interest here, each of them is the product of a spatial orbital and a spinor (either up or
down): we use for this the notation ψj(r) (spin up) and ψj(r) (spin down). We only consider
the so-called restricted case, where up- and down-spin orbitals share the same spatial orbital.
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For convenience, and also for the sake of uniformity with other published work [10, 16, 23],
we adopt a plane-wave-like normalization for the orbitals:

〈ψj |ψj ′ 〉 = 1

L3

∫
dr ψ∗

j (r)ψj ′(r) = δjj ′ , (2)

where the integration is performed over the cube of volume L3. The normalized wavefunction
is therefore

|�0〉 = 1√
N !L3N

|ψ1ψ1ψ2ψ2 · · · ψN/2ψN/2| = A
N/2∏
j=1

1

L3
ψjψj , (3)

where A is the antisymmetrizer and each orbital is periodic in the supercell.
As stated above, a wavefunction of the form of equation (3) is exact for noninteracting

electrons in an external potential. However, such form also defines the approximate
wavefunction within a mean-field theory (e.g. Hartree–Fock [26] or Kohn–Sham (KS) [27];
see also section 3.3), where each electron moves in a potential due to the external potential
and to the mean-field interaction with all the other electrons.

I have already stressed the value of PBC both in leading to analytical results (letting
L → ∞) and in making actual calculations feasible (keeping L finite): in the latter case,
it is enough to choose L reasonably larger than the relevant correlation lengths. Indeed,
many breakthrough results in recent years have been obtained by means of Car–Parrinello [28]
simulations (also called first-principles molecular dynamics) for liquid and disordered systems.
These calculations are of the mean-field KS [27] type, where PBC are imposed on a supercell
which typically contains N 	 102–103 valence electrons.

2.3. Reduced density matrices

The many-body density matrix is by definition ρ̂ = |�0〉〈�0|; the spinless reduced matrices are
obtained from ρ̂ by taking partial traces over all the spin coordinates, and over N −1, N −2, . . .

space coordinates, respectively. Explicitly, the one-body reduced density matrix is

ρ(1)(r1, r′
1) = N

∑
σ1

∫
dx2 dx3 · · · dxN �0(x1, x2, . . . xN)�∗

0 (x′
1, x2, . . . xN). (4)

Its diagonal in coordinate space is just the number density:

n(r) = ρ(1)(r, r), (5)

and integrates to N over the volume L3.
In the special case of a determinantal wavefunction of the form of equation (3), the reduced

density matrix has a meaningful form in terms of the single-particle orbitals. It is in fact easy
to prove that [25]

ρ(1)(r, r′) = 2 P(r, r′) = 2
N/2∑
j=1

ψj(r)ψ∗
j (r′). (6)

The orbitals in equation (3) enjoy a substantial nonuniqueness: any unitary transformation
of the occupied orbitals amongst themselves in fact leaves the Slater determinant unchanged,
and hence defines the same wavefunction �0. We call these unitary transformations ‘gauge
transformations’; what defines the wavefunction uniquely (apart from an overall phase) is the
(N/2)-dimensional manifold spanned by the occupied orbitals. Indeed, the operator P in
equation (6) is precisely the projector over the occupied manifold, and is manifestly gauge
invariant. Since the wavefunction is a function of P , so are all the (higher-order) reduced
density matrices and all the physical observables.
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2.4. The crystalline case

While PBC can be applied quite generally to any condensed system, the case of a crystalline
system deserves additional comments. Suppose the crystal is simple cubic with lattice
parameter a; we then choose the Born–von Kármán period as an integer multiple of the
lattice parameter: L = Ma, where the thermodynamic limit obtains for M → ∞. In the
case of a low-symmetry crystal it is obviously more convenient to choose a noncubic supercell
as a multiple of the elementary crystal cell. Apart from some burdening of notation, the
generalization of the present results to low-symmetry crystals is straightforward and will not
be considered here. Details on this issue can be found in [10, 29], and SWM.

The lattice vectors are Rl , where l ≡ (l1, l2, l3) and

Rl = a(l1, l2, l3), lα = 0, 1, . . . , M − 1. (7)

Since the single-particle potential is lattice periodic, a suitable gauge choice leads to orbitals
of the Bloch form:

ψnq(r) = eiq·runq(r), (8)

where q is the Bloch quasimomentum, and the us are lattice periodic:

unq(r + Rl) = unq(r). (9)

Owing to PBC, there are M3 allowed Bloch vectors qs , which lie on a regular mesh in the unit
reciprocal cell, where s ≡ (s1, s2, s3) and

qs = 2π

Ma
(s1, s2, s3), sα = 0, 1, . . . , M − 1. (10)

The orbitals ψnqs
belong then to the Hilbert space of the periodic functions on the supercell of

size L, while the orbitals unq belong to the space of the periodic functions on the elementary
crystal cell of size a (at any q). The Bloch orbitals ψnqs

at different s are orthogonal by
symmetry, where the scalar product is the same as that defined in equation (2).

If the system is insulating with nb doubly occupied bands, the Slater determinant of
equation (3) can be written as

|�0〉 = A
∏
n,s

1

L3
ψnqs

ψnqs
, (11)

where the product runs over all occupied bands and all mesh points. If, instead, the system is
metallic, then the many-body wavefunction �0 can still be written in the form of equation (11),
but where not all the Bloch vectors of a given band are included in the product. We anticipate
that this qualitative difference has outstanding implications for the main theme of this work.

A gauge transformation allows us to write the insulating wavefunction in equation (11)
as a Slater determinant of N = 2nbM

3 localized functions. We define the Wannier function
(WF) of the nth band in the central cell as [30, 31]

wn(r) = 1

M3a3/2

∑
s

ψnqs
, (12)

and the generic WF as

〈r|wnRl
〉 = wn(r − Rl). (13)

Equation (11) is then identically recast as

|�0〉 = A
∏
n,l

wnRl
wnRl

. (14)

We stress that the definition of equation (12) still leaves a large gauge freedom, since the phases
of the Bloch functions at different s can be chosen arbitrarily.
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2.5. The thermodynamic limit

By definition, the thermodynamic limit obtains for N → ∞, while the density N/L3 is kept
constant. In practical calculations, the limit is approximated using finite-N systems, and
choosing L much larger than the atomic dimensions; more precisely, L must be larger than
the correlation lengths of interest. It is important to stress, however, that the spectrum of
the finite system is qualitatively different from the limiting case: while the former is always
discrete, the latter is continuous as e.g. for the usual band spectrum of crystalline solids [1,2].
Also the analytic properties of the quantities of interest are qualitatively different. At finite
L, the density matrix ρ(1)(r, r′) is a periodic function of either r or r′, independently. In the
thermodynamic limit it goes to zero for |r − r′| → ∞.

Although, as observed above, the many-body wavefunction is an ill-defined mathematical
object in the thermodynamic limit, the single-particle orbitals of an independent-electron
crystal do indeed go to a well-defined limit. The Bloch orbitals retain the form of equations (8)
and (9), where the q-vector becomes a continuous variable. The single-particle density matrix,
equation (6), becomes then a reciprocal-space integral:

P(r, r′) = 1

(2π)3

nb∑
n=1

∫
dq ψnq(r)ψ∗

nq(r
′). (15)

For insulators, the integral is performed over the whole reciprocal cell or, equivalently,
over the whole Brillouin zone; for large |r − r′| the projector P(r, r′) then decays
exponentially [32–35]. In the metallic case the integral in equation (15) is performed over
the q-vectors within the Fermi surface; as a consequence, the decay for large |r − r′| is only
polynomial. There are reasons suggesting that such an analytic difference remains in the
presence of electron–electron interaction and/or disorder [36].

2.6. Optimally localized Wannier functions

The WFs also go to a well-defined thermodynamic limit, which can be expressed as a reciprocal-
cell integral:

w(∞)
n (r) = a3/2

(2π)3

∫
dq ψnq(r), (16)

where we have introduced the explicit superscript (∞) in order to distinguish the WFs of
equation (16) from those of equation (12). In fact they belong to completely different Hilbert
spaces: while the WFs of equation (12) obey PBC over the supercell, and are orthonormal
when the integration is performed over the volume L3, the ones of equation (16) are square
integrable and orthonormal over the whole three-dimensional space:

〈w(∞)
nRl

|w(∞)
n′Rl′

〉 =
∫

all space
dr w(∞)∗

n (r − Rl)w
(∞)
n′ (r − Rl′) = δnn′δll′ . (17)

Such a dramatic change is a direct consequence of the above-mentioned change in the analytic
properties of the spectrum.

The moments of the w(∞)s are well-defined quantities. Let us focus on the spherical
second moments, i.e. on the quantity

� =
nb∑

n=1

(∫
all space

dr |r|2|w(∞)
n (r)|2 −

∣∣∣∣
∫

all space
dr r|w(∞)

n (r)|2
∣∣∣∣
2)

, (18)

where we are dealing with an insulator with nb doubly occupied bands. Owing to the
nonuniqueness of the WFs stressed above, � is a gauge-dependent quantity [31]; there is
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then a particular gauge such that � assumes its minimum value. This problem was thoroughly
studied in 1997 by Marzari and Vanderbilt [37], hereafter quoted as MV, whose key result will
be useful in the remainder of the present review.

Besides the choice of the phases in equation (12), an even larger gauge freedom exists,
since any unitary transformation of the Bloch orbitals of the nb occupied bands at the same q

leaves the many-body wavefunction, equation (11), invariant. Following MV, it is understood
throughout that we refer to multi-band WFs in this generalized sense. The WFs which actually
minimize equation (18) are called ‘optimally localized’; we will assume in the following that
such WFs are exponentially decaying for large r. This can be analytically proved in one
dimension [32, 35], and is a very plausible conjecture in three dimensions.

MV prove that � is no smaller (in three dimensions indeed, strictly larger) than a gauge-
invariant quantity, for which they provide an explicit expression. Using notation which will
be useful below, we define the tensor 〈rαrβ〉c, where the subscript c stands for ‘cumulant’, as

〈rαrβ〉c = a3

nb(2π)3

∫
dq

( nb∑
n=1

〈
∂

∂qα

unq

∣∣∣∣ ∂

∂qβ

unq

〉
−

nb∑
n,n′=1

〈
unq

∣∣∣∣ ∂

∂qα

un′q

〉〈
∂

∂qβ

un′q

∣∣∣∣unq

〉)
.

(19)

This tensor is gauge invariant and intensive (e.g. invariant on cell doubling). The MV inequality
is then expressed by saying that the average quadratic spherical spread is larger than the trace
of 〈rαrβ〉c, i.e.,

�/nb >
∑

α

〈rαrα〉c. (20)

It was later shown by Sgiarovello et al [23] that equation (19) can be identically recast, using
equation (15), as

〈rαrβ〉c = 1

2nb

∫
cell

dr

∫
all space

dr′ (r − r′)α(r − r′)β |P(r, r′)|2. (21)

This has the simple meaning of a second moment of the (squared) density matrix in the
coordinate r − r′; the gauge invariance of equation (21) is clear.

3. Dipole, phase operator, and macroscopic polarization

3.1. The main problem

For a molecule (or cluster) isolated in space the ground wavefunction is bound. The electronic
term in the electric dipole is then obviously defined as the first moment of the single-particle
density:

d = e

∫
dr rn(r), (22)

where e is the electron charge (negative throughout this work). On introducing the position
operator as

R̂ =
N∑

i=1

ri , (23)

equation (22) is equivalently recast in a many-body form:

d = e〈�0|R̂|�0〉. (24)

Unfortunately, both the above expressions for the dipole are devoid of any meaning when PBC
are adopted, as is common practice in condensed matter physics. This drawback has plagued
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the theory of macroscopic polarization for a long time; most textbooks contain incorrect
statements on the subject. Equally devoid of any meaning are higher moments of the electron
distribution.

The drawback is a very serious one, and has to do with the Hilbert space defined by PBC.
Any operator, by its very definition, maps a vector belonging to the given Hilbert space into
another vector of the same space. But when we apply the multiplicative operator R̂ to a function
which obeys PBC, say on a cube of side L, we get a function which is no longer periodic, i.e.
does not belong to the space. Hence the position operator, as defined by equation (23), is a
‘forbidden’ operator with PBC, while in fact is a quite acceptable operator in the Hilbert space
of square-integrable functions.

The macroscopic polarization of a condensed system is a crucial concept in any
phenomenological description of dielectric media [38]; this quantity is ideally defined as
the dipole of a macroscopic sample, divided by its volume. But the simple definition of
equation (22) is useless, and a different strategy must be used to attack the polarization problem.
Since 1992 [5–8,10] it has been well established that bulk macroscopic polarization is a physical
observable completely independent from the charge distribution of the polarized crystalline
dielectric. Instead, and perhaps surprisingly to several readers, it has much to do with the
phase of the wavefunction.

3.2. Many-body phase operator

The key quantity in dealing with the dipole (alias polarization) problem, as well as some
problems arising from higher moments, is the many-body phase operator, first introduced
in [12]. We start by defining the unitary many-body operator

Û (k) = exp(ik · R̂), (25)

where k is an arbitrary vector, having the dimensions of an inverse length. Even this operator is
local in the Schrödinger representation (i.e. multiplicative), and suffers from the same drawback
as R̂ with regard to PBC, except for special values of the vector k.

In fact, whenever the components of the vector k are integer multiples of 2π/L, the
operator Û (k) maps a periodic function (over the supercell) into another periodic function; it
is therefore an admissible operator in the PBC Hilbert space. We introduce the notation κ(α)

for three useful vectors k in this class, choosing them proportional to the three Cartesian unit
vectors:

κ
(α)
β = 2π

L
δαβ. (26)

We also introduce special notation for the three ground-state expectation values:

z
(α)
N = 〈�0|Û (κ(α))|�0〉. (27)

These are dimensionless complex numbers whose modulus is no larger than one. We show later
that, in insulators, the phase of z

(α)
N is indeed the α-component of macroscopic polarization,

measured in suitable units [12, 13, 16]. Explicitly, this phase is defined as

z
(α)
N = |z(α)

N |eiγ (α)
N ; (28)

γ
(α)
N = Im log z

(α)
N . (29)

For reasons explained elsewhere [16], γ
(α)
N as defined by equations (28) and (29) is a Berry’s

phase [14, 15].
There is an important feature of the many-body phase operator which is worth stressing:

unlike R̂, the operator Û (k) is a genuine many-body one. Looking at equation (23), we
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notice that R̂ is the sum of N identical operators, each acting on the coordinates of one
electron. In other words, it is a one-body operator written in many-body notation: the many-
body expectation value in equation (24) simplifies to (22). Since the wavefunction contains
redundant and cumbersome information, this is an enormous simplification—and notice that
it applies to correlated- and independent-electron wavefunctions on the same basis. More
generally, the expectation value of any one-body operator can be expressed using solely the
one-body density matrix ρ(1). Having said this, it is then clear in which sense our operator
Û (k) is a genuinely many-body one. In fact the integrations in equation (27), i.e.

z
(α)
N =

∫
dx1 dx2 · · · dxN eiκ(α)·

∑N
i=1 ri |�0(x1, x2, . . . xN, )|2, (30)

do not factor and require treatment of the full wavefunction; reduced density matrices are not
enough to get the result. The latter statement has one obvious exception: in the special case
of a Slater-determinant wavefunction of the form of equation (3), the wavefunction itself is a
unique function of ρ(1); hence z

(α)
N is also a unique function of ρ(1).

3.3. Implications for the foundations of density-functional theory

As previously stated, z
(α)
N is the key quantity which defines the macroscopic polarization of

a condensed system, as well as the localization properties of its ground wavefunction: the
former issue is discussed in section 3.5 and the latter one in section 5.3.

Since the concept of polarization is intuitively related to the dipole, it may appear surprising
that polarization is not a one-body property, expressible in terms of the one-body density
matrix ρ(1). This fact stems at a very fundamental level from PBC, and can be regarded as an
unavoidable trade-off. In a cluster, where equation (22) applies, an important contribution to
the dipole comes from the cluster surface; with PBC there is no surface by definition, and the
information about the dipole goes instead into the phase of the many-body wavefunction.
This trade-off also has outstanding implications for the foundations of density-functional
theory [27].

By definition, the density of the fictitious noninteracting KS system equals the density of
the interacting one; equation (22) then obviously implies that, in a molecule or in a cluster
of any size, the dipole of the KS system equals the exact one. Matters change dramatically
when PBC are adopted. Since the macroscopic polarization of a condensed system is not a
function of the density, the KS system and the interacting one have different polarizations.
This quite important and unexpected feature was first discovered in 1995 by Gonze et al [39],
and discussed in several subsequent papers [40]. Within the formalism of the present review,
a discussion can be found in [13]; numerical evidence on this issue has been given in [41,42].

Below we provide explicit formulae for dealing with an independent-electron system, as
regards macroscopic polarization (sections 3.6 and 3.7) and electron localization (section 6.1).
These formulae are exact for a genuinely noninteracting system. When applied within density-
functional theory, they provide polarization and localization, respectively, of the noninteracting
KS system; both are different, in principle, from the corresponding quantities for the interacting
system.

Within any electronic structure calculations, one unavoidably introduces systematic errors
due to the physical approximations. Within the first-principles KS framework, usually the
only source of systematic error is the specific choice made for the exchange–correlation
functional [27]: as a general feature, one cannot compute the exact KS orbitals, but only some
approximations to them. When such KS orbitals are used in evaluating either polarization or
localization, one then introduces a further systematic error due to the above issue. The actual
importance of the latter feature—and the relative importance of the two kinds of error—is
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currently a matter of debate [41, 42]. We proceed by heuristically assuming that, in weakly
correlated systems at least, z

(α)
N for the noninteracting KS system is a good approximation to

the z
(α)
N for the interacting system. This assumption is supported by the success of many first-

principles KS calculations of the macroscopic polarization, in several different materials [17].

3.4. Hamiltonian modified with a flux

Our N -body stationary states �n are eigenstates of the Hamiltonian

Ĥ = 1

2m

N∑
i=1

|pi |2 + V̂ , (31)

with eigenvalues En. In equation (31) m is the electron mass and the potential V̂ includes a
one-body term (the external potential) and a two-body one (the electron–electron interaction).
Following Kohn [3, 4], it is expedient to define a more general class of Hamiltonians:

Ĥ (k) = 1

2m

N∑
i=1

(pi − h̄k)2 + V̂ , (32)

where k is arbitrary. Obviously, Ĥ (0) coincides with our original Hamiltonian Ĥ ,
equation (31). It is understood that, for any k, the eigenstates �n(k) of equation (32) are found
by imposing the ordinary PBC on the supercell. Owing to the PBC, the eigenvalues depend
on k; they will be called En(k) in the following. The modified Hamiltonian, equation (32),
is generally called the ‘Hamiltonian with a flux’ [43]. This is because its one-dimensional
analogue describes the motion of an electron on a ring threaded by an Aharonov–Bohm
magnetic flux [44, 45].

A perturbative expansion of the ground eigenstate of Ĥ (k) yields, to leading order in k,

|�0(k)〉 	 |�0〉 +
h̄

m
k ·

∑
n
=0

′|�n〉 〈�n|P̂ |�0〉
En − E0

, (33)

where P̂ is the momentum operator

P̂ =
N∑

i=1

pi = −ih̄
N∑

i=1

∇i . (34)

We notice that P̂ is an admissible operator for PBC; it is a one-body and nonlocal operator.
We now consider the states

|n(k)〉 = Û (k)|�n〉, (35)

where Û is the many-body phase operator. It is easy to prove that they satisfy

Ĥ (k)|n(k)〉 = En|n(k)〉. (36)

Despite this identity, the n(k) are in general not eigenstates of Ĥ (k), since they do not
obey PBC. In fact, the n(k) wavefunctions are quasiperiodic over the supercell; this fact
is also expressed by saying that they obey ‘twisted’ boundary conditions [19, 43]. There
exist, however, special vectors k such that the states n(k) obey PBC and are indeed genuine
eigenstates of Ĥ (k) with eigenvalues En; for instance, this is the case when k equals one of
the κ(α) vectors, equation (26).

We focus now on �0(κ
(α)), the ground eigenstate of Ĥ (κ(α)); what was said above

guarantees that it coincides with either 0(κ
(α)), or with n(κ

(α)) where n 
= 0. We address
here only the case of a ‘nonexotic’ insulator, having a finite gap in the excitation spectrum;
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more about the issue will appear below, section 4.4. We therefore assume for the time being
that the ground state �0 is nondegenerate, and that the lowest excitation energy goes to a finite
value εg in the thermodynamic limit. It is easy to prove that, for large enough L, one has
|E0(κ

(α)) − E0| < εg; ergo �0(κ
(α)) coincides with 0(κ

(α)), apart for an overall phase.
The above findings, together with equations (28) and (33), yield then

Û (κ(α))|�0〉 = |0(κ
(α))〉 	 eiγ (α)

N

(
|�0〉 +

2πh̄

mL

∑
n
=0

′|�n〉 〈�n|P̂α|�0〉
En − E0

)
(37)

to leading order in κ(α) ∝ L−1.

3.5. Macroscopic polarization

For centrosymmetric materials the expectation values z
(α)
N are real (provided that the origin

is chosen at a centrosymmetric site), while in noncentrosymmetric materials they are in
general complex: their phases γ

(α)
N define then the Cartesian components of the macroscopic

polarization in suitable units. As will be discussed below, in the metallic case the z
(α)
N vanish

(fast enough with N ) and the polarization is ill defined. For insulators, the expectation values of
the many-body phase operator do not vanish and the macroscopic polarization is well defined.

When discussing macroscopic polarization, it should be kept in mind that the ‘absolute’
polarization of a given sample has never been measured as a bulk property: one invariably
measures derivatives (dielectric constants, piezoelectric coefficients, dynamical charges. . . ) or
finite differences (polarization reversal in ferroelectrics) [10,11,16]. Furthermore, the quantity
actually measured is the macroscopic current j which traverses the sample while the given
perturbation is adiabatically switched on. One is therefore interested in the quantity

�P =
∫ �t

0
dt j(t); (38)

in the adiabatic limit, �t goes to infinity and j(t) goes to zero, while �P depends on the
initial and final states. There is no need to define what the absolute polarization of the initial
and final states is. Let me however mention that there are indeed ways of defining absolute
polarization [7], but one pays the price of getting a rather unusual vector property, which we
are not going to discuss here.

Macroscopic polarization is generally understood as a static property. Within PBC it
is instead more convenient to address only polarization differences, and to regard them as
dynamical properties in the adiabatic limit, as in equation (38). Indeed, this is a very general
feature of most observables having the nature of a Berry’s phase [14–16].

We suppose that the Hamiltonian, equation (31), includes a slowly varying time-dependent
term. We call �n the adiabatic instantaneous eigenstates at time t , and �̃ the exact time-evolved
ground state. To leading order in the adiabaticity parameter we have

|�̃〉〈�̃| 	 |�0〉〈�0| + ih̄
∑
n
=0

′
(

|�n〉 〈�n|�̇0〉
En − E0

〈�0| − H.c.

)
, (39)

where H.c. indicates the Hermitian conjugate. Equation (39) is generally attributed to Niu and
Thouless [46]. The current flowing through the system is then

j = e

mL3
〈�̃|P̂ |�̃〉 	 − ieh̄

mL3

∑
n 
=0

′ 〈�̇0|�n〉〈�n|P̂ |�0〉
En − E0

+ c.c., (40)

where c.c. indicates the complex conjugate.
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Following [12] we are going to show that the macroscopic polarization is

Pα = eγ
(α)
N

2πL2
= e

2πL2
Im log z

(α)
N . (41)

To this end, it is enough to evaluate the Berry phase γ
(α)
N using the adiabatic instantaneous

eigenstates, and to take its time derivative. From equations (27) and (29) we get

γ̇
(α)
N = Im

( 〈�̇0|Û (κ(α))|�0〉
〈�0|Û (κ(α))|�0〉

+
〈�0|Û (κ(α))|�̇0〉
〈�0|Û (κ(α))|�0〉

)
= −i

〈�̇0|Û (κ(α))|�0〉
〈�0|Û (κ(α))|�0〉

+ c.c. (42)

Using then equation (37) we have, to leading order in L−1,

γ̇
(α)
N 	 −i

2πh̄

mL

∑
n
=0

′ 〈�̇0|�n〉〈�n|P̂ |�0〉
En − E0

+ c.c. (43)

Comparison with equations (38) and (40) immediately leads to the proof of equation (41).

3.6. Independent electrons

In the special case of a Slater-determinant wavefunction, the ground-state expectation value
z
(α)
N is easily expressed in terms of the occupied spin orbitals ψj . Rewriting equation (27) as

z
(α)
N = 〈�0|0(κ

(α))〉, (44)

we notice that whenever the wavefunction �0 is a Slater determinant, even 0(κ
(α)) is a Slater

determinant, whose spin orbitals φs are obtained from the corresponding ψs of equation (3)
as

φj (r) = eiκ(α)·rψj(r), (45)

and analogously for the φs (spin-down) ones. According to a well-known theorem, the overlap
between two Slater determinants is equal to the determinant of the N ×N overlap matrix built
out of the occupied spin orbitals. Since the overlaps between different-spin spin orbitals vanish,
and those between equal-spin ones are identical in pairs, we can factor the determinant as

z
(α)
N = (det S(α))2, (46)

where S(α) is the overlap matrix between the occupied spatial orbitals, having size N/2. Its
elements are

S(α)
jj ′ =

∫
dr ψ∗

j (r)eiκ(α)·rψj ′(r). (47)

The expressions of equations (46) and (47) as they stand are of great practical value,
particularly for disordered systems. In fact they have been extensively used [47] in evaluating
macroscopic polarization and infrared spectra of liquid and disordered systems by means of
Car–Parrinello simulations [28].

3.7. King-Smith and Vanderbilt’s formula

For crystalline systems, we may exploit the translational symmetry by choosing the occupied
orbitals in the Bloch form; such a choice leads to a powerful factoring of the determinant of
the overlap matrix S(α). When we identify the orbital index j with the band index n and the
Bloch index qs together, as in equation (11), the S(α) elements become

S(α)
nqs ,n′qs′

= 1

L3

∫
dr ψ∗

nqs
(r)φn′qs′ (r) = 1

L3

∫
dr u∗

nqs
(r)un′qs′ (r)ei(κ(α)+qs′ −qs )·r. (48)
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The matrix S(α) is therefore very sparse, since the supercell integrals in equation (48) vanish
unless κ(α) + qs ′ − qs = 0. We define the small overlap matrix S(q, q′) as

Snn′(q, q′) = 〈unq|un′q′ 〉 = 1

a3

∫
cell

dr u∗
nq(r)un′q′(r), (49)

where now the integral is performed over the crystalline cell of volume a3. The small overlap
matrix S(q, q′), first introduced by Blount [31], allows a compact formulation of the modern
theory of polarization [10].

For an insulating crystal with nb doubly occupied bands the determinant of the large
overlap matrix S(α), of size N/2 = nbM

3, factors into the product of M3 small determinants
of size nb. From equation (46) we have then

z
(α)1/2
N = det S(α) =

∏
s

det S(qs + κ(α), qs), (50)

and the macroscopic polarization, equation (41), becomes

Pα = − e

πL2
Im log

∏
s

det S(qs , qs + κ(α)). (51)

It is straightforward to prove [10, 16] that the thermodynamic limit of equation (51) is the
reciprocal-cell integral:

Pα = 2ie

(2π)3

nb∑
n=1

∫
dq

〈
unq

∣∣∣∣ ∂

∂qα

unq

〉
. (52)

This is indeed the—by now famous—Berry’s phase formula for the macroscopic polarization
of a crystalline system of independent electrons, derived by King-Smith and Vanderbilt in
1993 [6].

4. Linear response and conductivity

4.1. Kubo formulae and sum rules

So far, we have only discussed ground-state properties of our N -electron system. Suppose
now that it is subject to a small time-dependent perturbation contributing to the Hamiltonian
the term

δĤ (t) = 1

2π

∫ ∞

−∞
dω f (ω)

1

2
(Âe−iωt + Â†eiωt ), (53)

where Â determines the ‘shape’ of the perturbation and f its amplitude. In order to get
a Hermitian δĤ , we assume f (ω) = f (−ω). We wish to measure the response to such
perturbation by means of the expectation value of some observable B̂, i.e.

δ〈B̂〉 = 〈�̃|B̂|�̃〉 − 〈�0|B̂|�0〉, (54)

where �̃ = �0 + δ�(t) is the perturbed time-evolved ground state. If we limit ourselves to
studying terms which are linear in the response, it is enough to consider the single oscillatory
perturbation

Ĥ ′(ω) = 1
2 (Âe−iωt + Â†eiωt ), (55)

whose response can be written, using the compact notation due to Zubarev [25, 48, 49], as

δ〈B̂〉 = 1
2 (〈〈B̂|Â〉〉ωe−iωt + 〈〈B̂|Â〉〉−ωeiωt ). (56)
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The quantity 〈〈B̂|Â〉〉ω is by definition the linear response induced by the perturbation Â at
frequency ω on the expectation value 〈B̂〉. Straightforward first-order perturbation theory
provides its explicit expression:

〈〈B̂|Â〉〉ω = 1

h̄
lim

η→0+

∑
n 
=0

′
( 〈�0|B̂|�n〉〈�n|Â|�0〉

ω − ω0n + iη
− 〈�0|Â|�n〉〈�n|B̂|�0〉

ω + ω0n + iη

)
, (57)

where ω0n = (En − E0)/h̄ are the excitation frequencies of the unperturbed system, and the
positive infinitesimal η ensures causality. Expressions of the kind of equation (57) go under
the name of Kubo formulae.

Denoting by P the principal part of an integral, one has the identity

lim
η→0+

1

ω + iη
= P

1

ω
− iπδ(ω). (58)

The imaginary part of the response has therefore the spectral decomposition

Im 〈〈B̂|Â〉〉ω = −π

h̄

∑
n 
=0

′
[〈�0|B̂|�n〉〈�n|Â|�0〉δ(ω − ω0n)

− 〈�0|Â|�n〉〈�n|B̂|�0〉δ(ω + ω0n)]. (59)

Integrating over the positive frequencies, and exploiting the completeness of the Hilbert space,
we get the sum rule∫ ∞

0
dω Im〈〈B̂|Â〉〉ω = −π

h̄
(〈�0|B̂Â|�0〉 − 〈�0|B̂|�0〉〈�0|Â|�0〉). (60)

This exact relationship looks like the zero-temperature limit of a fluctuation-dissipation
theorem, several forms of which have been known in statistical physics [50, 51] from about
one century ago [52]: equation (60) equates in fact the imaginary part of the response—and
hence dissipation—to some equilibrium expectation values. In the special case of B̂ = Â the
right-hand side of equation (60) is precisely the quantum fluctuation of the observable Â in the
ground state. Finally, we stress that the sum rule holds for any pair of many-body operators Â

and B̂, provided that both are admissible operators in the Hilbert space defined by the given
boundary conditions.

4.2. Dipole response and fluctuations

We now outline the case where the operators Â and B̂ are both identified with the position
operator R̂, equation (23). As previously stressed in section 3.1, this is not an admissible
operator for PBC. The forthcoming discussion, therefore, is limited to the case of a molecule
(or cluster), where the ground wavefunction is bound; it is customary to refer to this case as
that of ‘open’ boundary conditions, in contrast to PBC.

An oscillating longitudinal electric field E cos ωt couples to the N -electron system, in the
dipole gauge, via the position operator

Ĥ ′(ω) = −e cos(ωt)E · R̂. (61)

The induced dipole, owing to equation (24), is by definition the expectation value of the same
operator. The dipolar polarizability tensor αβγ at frequency ω is then

αβγ (ω) = −e2〈〈R̂β |R̂γ 〉〉ω, (62)

and the sum rule of equation (60) takes the form∫ ∞

0
dω Im αβγ (ω) = πe2

h̄
(〈�0|R̂βR̂γ |�0〉 − 〈�0|R̂β |�0〉〈�0|R̂γ |�0〉). (63)
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For any finite system with open boundary conditions, the two members of equation (63) are
well defined and finite.

One may then argue that, for a metallic cluster in the large-size limit, the dipole
polarizability diverges and the second cumulant moment in the right-hand side diverges as
well; this divergence was indeed proposed long ago in the solid-state literature to identify
the onset of conduction and the metal–insulator transition [53, 54]. However, caution is in
order when addressing the thermodynamic limit of expressions like equation (63), based on
unbound operators. The lesson drawn in recent years from the modern theory of polarization,
and outlined in section 3, is relevant to the present issue as well. In short, the matrix elements
in equations (57) and (63) may well happen to be dominated by the electron distribution at
the surface of the cluster. Some further discussion, particularly of Kudinov’s work [54], is
provided by SWM. Throughout this review, we safely proceed using only PBC where, among
other features, no surface exists.

4.3. Current response

Unlike the dipole gauge, the current gauge is compatible with PBC. In fact within this gauge,
the coupling of the system to an oscillating macroscopic field is, to first order in E,

Ĥ ′(ω) = sin(ωt)
e

mω
E · P̂ = ie

2mω
(e−iωt − eiωt )E · P̂ , (64)

where P̂ is the momentum operator, equation (34).
Since the induced macroscopic current j equals eδ〈P̂ 〉/(mL3), the definition of

equation (56) leads to a linear response:

j = ie2

2mωL3
e−iωt

∑
β

〈〈P̂α|P̂β〉〉ωEβ + c.c. (65)

The frequency-dependent conductivity tensor is therefore

σαβ(ω) = ie2

m2ωL3
〈〈P̂α|P̂β〉〉ω, (66)

and the Kubo formula, equations (57) and (58), for the diagonal elements yields

Re σαα(ω) = πe2

h̄m2L3

∑
n

1

ω0n

|〈�0|P̂α|�n〉|2δ(ω − ω0n), ω > 0;

Im σαα(ω) = 2e2

h̄m2L3

∑
n

|〈�0|P̂α|�n〉|2P 1

ω2 − ω2
0n

.

(67)

Notice that n = 0 can be formally included in the sum, since the ground-state expectation
value 〈�0|P̂ |�0〉 vanishes. The conductivity given in equation (67) obeys the Kramers–Kronig
relations in the form [49, 50]

Re σαα(ω) = 2

π
P

∫ ∞

0
dω′ ω′

ω′2 − ω2
Im σαα(ω′);

Im σαα(ω) = − 2

π
P

∫ ∞

0
dω′ ω′

ω′2 − ω2
Re σαα(ω′).

(68)

4.4. Metals and insulators

The main quantity which discriminates between a conducting and nonconducting material at
zero temperature is the low-frequency limit of the conductivity. As long as L remains finite,
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the spectrum is discrete and the real part of the conductivity is either vanishing or diverging
as a function of ω. Since the spectrum becomes dense in the thermodynamic limit, for any
given ω the sum over the states in equation (67) converges to an integral, and the real part of
the conductivity may eventually become a regular function of ω. I stress that, in general, the
thermodynamic limit (L → ∞) and the dc limit (ω → 0) cannot be interchanged.

Suppose that instead of being interested in the dc conductivity, we focus on an expression
where some frequency integral ofσαβ(ω) appears, such as the dispersion relations equation (68),
or equation (89) below. Such integrated expressions hold at any finite L and also remain
valid in the L → ∞ limit: therefore the ω-integration and the thermodynamic limit can be
interchanged.

At this point, it is worth mentioning that another method for regularizing the sum in
equation (67) consists [43] in assuming the existence of a weak coupling between our N -
electron system and the rest of the Universe, described phenomenologically by a broadening of
each level by an amount �, much larger than the mean level spacing at the given L. Eventually,
the limit � → 0 is taken at fixed ω. Once more the two limits � → 0 and ω → 0 limit do not
commute, while instead the � → 0 limit commutes with ω-integrations.

In a simple insulator—with a finite gap εg in the excitation spectrum—the real part of the
conductivity strictly vanishes for ω < εg. In other classes of more exotic insulators, the energy
of the lowest-lying electronic excitation might converge to zero in the thermodynamic limit.
However, in this case the momentum elements in equation (67) either vanish or go to zero
fast enough with decreasing excitation energies to ensure the vanishing of the dc conductivity
characterizing the insulating state of matter at zero temperature.

In a metal the dc conductivity does not vanish. More precisely, following the analysis of
SWM, two cases must be considered:

(i) ideal conductors where the electrons undergo free acceleration in a dc field; and
(ii) nonideal conductors, such as disordered metal alloys, where scattering damps free

acceleration.

In both cases, the real part of the conductivity includes a regular part which goes to a nonzero
limit Re σαα(0) for ω → 0. Additionally, in case (i) there is a singular term proportional to
δ(ω), accounting for the free-acceleration behaviour of the system electrons.

5. Electron localization

5.1. Fundamentals: one electron in one dimension

Let us start by considering the elementary problem of a one-dimensional potential well of
unspecified shape. The Hamiltonian eigenfunctions ψ(x) can be of two different kinds: either
bound (localized, square integrable, exponentially decaying) or unbound (delocalized, non-
normalizable, scattering states). This distinction is a sharp qualitative one, provided that we
adopt the usual boundary conditions for ψ(x) over (−∞, ∞); these are usually called ‘fixed’ or
‘open’ boundary conditions. A quantity of interest is the quadratic spread, or second cumulant
moment, defined as 〈x2〉c = 〈ψ |x2|ψ〉− 〈ψ |x|ψ〉2; this quantity is finite for a bound state and
diverges for an unbound one, thus providing a sharp localization criterion.

We focus in the following on a localized state, for instance the ground state of a given
attractive well, and we call it ψ(∞)(x) for reasons which will become clear in a moment.
The corresponding density will be called nloc(x), for consistency with other published
work [13, 16, 18]; it is furthermore expedient to choose the origin at the centre of nloc(x),
in such a way that
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Figure 3. The distribution |ψ(x)|2 of a single-particle orbital with periodic Born–von Kármán
boundary conditions (PBC).

∫ ∞

−∞
dx xnloc(x) =

∫ ∞

−∞
dx x|ψ(∞)(x)|2 = 0. (69)

Next, we address the same attractive potential well using PBC over a segment of length
L. In this case, apparently, there is no longer any sharp distinction: all eigenstates ψ(x) are
periodic, and so all look delocalized-like. Then we may ask: what is the relationship between
ψ(x) and ψ(∞)(x)? Clearly, with a suitable choice of the origin, the large-L limit of ψ(x)

must coincide with ψ(∞)(x). A precise formulation of this statement is

ψ(x)
.=

∞∑
m=−∞

ψ(∞)(x − x0 − mL), (70)

where the symbol
.=, borrowed from Kohn [3, 4], means equality apart from terms which

vanish exponentially with L. Notice that equation (70) can be spelled out by saying that
the wavefunction ψ breaks up into a sum of functions which are localized in disconnected
regions; the many-body generalization of a similar concept is central to Kohn’s theory of
localization, section 5.2. Notice also that such disconnectedness results from the localized
character of ψ(∞), and does not apply to the scattering states of the given potential well. From
equation (70) it also follows that

|ψ(x)|2 .=
∞∑

m=−∞
nloc(x − x0 − mL). (71)

Such a density is sketched in figure 3, where we have chosen L much larger than the
exponential decay length of ψ(∞)(x); this is the crucial feature ensuring that the two members
in equations (70) and (71) are equal, to a good approximation.

We now wish to evaluate the quadratic spread of the charge distribution of the localized
state, i.e.

〈x2〉c = 〈x2〉 − 〈x〉2 =
∫ ∞

−∞
dx x2nloc(x) = −d2ñloc(k)

dk2

∣∣∣∣
k=0

. (72)

This is a problem if we are working with PBC, and we therefore have access to ψ(x) but not to
ψ(∞)(x): since the position operator x, as thoroughly discussed in section 3.1, is a forbidden
operator for PBC, we cannot evaluate any moment in the usual way. Of course, nloc(x) does
have well-defined moments, but inversion of equation (71) is not a good solution since it is
highly nonunique. The way to cope with this problem has been shown by RS: following them,
we define

z =
∫ L

0
dx ei(2π/L)x |ψ(x)|2. (73)
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The dimensionless complex number z, whose modulus is no larger than one, is just a Fourier
coefficient of the periodic distribution |ψ(x)|2; it can also be regarded as the single-particle
one-dimensional limit of z

(α)
N , equation (27). Using equation (71), this Fourier coefficient is

expressed by means of the Fourier transform of nloc as

z
.= ei 2π

L
x0 ñloc

(
−2π

L

)
. (74)

Owing to equations (69) and (72), the leading expansion of ñloc reads

ñloc(k) 	 1 − 1
2 〈x2〉ck

2. (75)

Identifying then k with −2π/L and using equation (74), we easily obtain

〈x2〉c 	 2

(
L

2π

)2

(1 − |z|), (76)

〈x2〉c 	 −
(

L

2π

)2

log |z|2. (77)

For a localized state, equations (76) and (77) go to the same finite limit for large L, but the
latter expression is preferable for dealing with delocalized states as well. In fact for a scattering
state one has |ψ(x)|2 	 1/L throughout the periodicity cell, and hence a vanishing |z| and an
infinite quadratic spread.

In conclusion, equation (77) solves the problem of measuring the quadratic spread of a
charge distribution with PBC, such as the (localized) one of figure 3. Furthermore, the same
expression allows one, in the large-L limit, to sharply discriminate between localized and
delocalized states: in the latter case, in fact, the quadratic spread defined by equation (77)
diverges.

5.2. Localization according to Kohn

The milestone 1964 Kohn paper [3, 4], bearing the title ‘Theory of the insulating state’,
vindicates within quantum mechanics the classical idea that electron localization is the reason
that the electronic charge in insulators cannot flow freely under an applied dc field. The
problem is: how does one define in a sharp manner localization/delocalization in the ground
state of insulators/metals? Kohn’s solution is that the essential characteristic of insulators is
disconnectedness of the ground wavefunction.

Let us consider our usual wavefunction �0 of the N -electron system with PBC over a cubic
supercell of volume L3. We then define the three-dimensional vectors M , whose components
are integer multiples of L. We can then write the PBC as

�0(x1, x2, . . . xi + M , . . . xN) = �0(x1, x2, . . . xi , . . . xN), (78)

where by xi + M we mean that the spatial component ri of xi is translated by M .
According to Kohn, the periodic wavefunction �0 is disconnected if it breaks down into

the sum of terms �0,M which are localized in nonoverlapping regions of the 3N -dimensional
hyperspace:

|�0〉 .=
∑
M

|�0,M 〉. (79)

Here the sum runs over the infinite set of the M -vectors, and all functions are defined in
the whole hyperspace. Kohn’s criterion of localization in nonoverlapping regions is that for
M 
= M ′ the product function �0,M�0,M ′ vanishes exponentially in the thermodynamic limit.
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��

��

Figure 4. Visualization of Kohn’s disconnectedness for a system of two spinless electrons in one
dimension. The shaded areas are regions where �0(x1, x2) is nonvanishing, and the square (of side
L) is the periodicity supercell. For any given M (a one-dimensional vector in this simple case) the
wavefunction �0,M (x1, x2) in equation (79) is localized within a single stripe.

The most elementary example of Kohn’s disconnectedness (for one particle in one
dimension) is the one implied by equation (70) and figure 3. Another schematic picture
of Kohn’s disconnectedness is provided in figure 4, where we have N = 2 one-dimensional
electrons (considered as spinless for the sake of simplicity). Their space coordinates are x1 and
x2, and the vector M is one dimensional. The nonoverlapping regions in the two-dimensional
hyperspace are the diagonal stripes sketched in the figure. There are novel features with
respect to the single-particle case: each of the �0,M is delocalized in either the x1- or x2-
variables, and the single-particle density n(x) is delocalized as well. Nonetheless, localization
in disconnected regions becomes evident if one considers the variable x1 − x2.

In the following we limit ourselves to illustrating how Kohn’s localization works for
the simple case of a crystalline system of independent electrons. As previously observed,
the ground wavefunction �0 can be written in this case as a Slater determinant of WFs,
equation (14), which obey PBC over the supercell of side L. In the thermodynamic limit each
of the WFs goes to a well-defined function, which in the appropriate gauge is exponentially
localized (section 2.6); we have used the (∞) superscript for these WFs. In full analogy to
equation (70), the WFs can be written as

〈r|wnRl
〉 = wn(r − Rl)

.=
∑
M

w(∞)
n (r − Rl − M) =

∑
M

〈r|w(∞)
n,Rl+M 〉. (80)

Using equation (80), it is then straightforward to prove [3, 4] that equation (14) becomes

|�0〉 .=
∑
M1

∑
M2

· · ·
∑
MNc

|�(∞)
M1M2···MNc

〉, (81)
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where Nc = N/(2nb) is the number of cells in the supercell2, and each �
(∞)
M1M2...MNc

is an
N -electron determinant, obeying open boundary conditions:

|�(∞)
M1M2...MNc

〉 = A
∏
n

w
(∞)
n,R1+M1

. . . w
(∞)
n,RNc +MNc

w
(∞)
n,R1+M1

. . . w
(∞)
n,RNc +MNc

. (82)

Kohn argues that the two wavefunctions �
(∞)
M1M2...MNc

and �
(∞)

M ′
1M

′
2...M

′
Nc

have exponentially

vanishing overlap unless M1 + M2 + · · · + MNc equals M ′
1 + M ′

2 + · · · + M ′
Nc

.
Therefore the disconnectedness as above defined is verified, provided that we identify

�0,M in equation (79) with

|�0,M 〉 =
∑

M1+M2+···+MNc =M

|�(∞)
M1M2···MNc

〉. (83)

This disconnectedness is the key feature forbidding the free flow of charge in insulators
under the application of a dc field, thus making the electrons polarizable but ‘bound’. Kohn
conjectures that the same kind of disconnectedness is the cause of the insulating behaviour
even in correlated and/or disordered systems, and quite generally in any insulator. A thorough
discussion of Kohn’s localization and of its relationship to the modern theory of localization
in insulators is provided by SWM.

5.3. Localization according to Resta and Sorella

The RS approach to electron localization stems from the modern theory of polarization
[5–11]—owing particularly to the formulation of [12]—and is based on the same basic
ingredients, namely the many-body phase operator of section 3.2 and its expectation values.
According to RS, the electron localization in any condensed system can be measured by
a Cartesian tensor, having the dimensions of a squared length. This localization tensor is
the thermodynamic limit of expressions—such as equations (84) and (86) below—based on
ground-state expectation values, where the latter are evaluated for N -electron wavefunctions
with PBC. It is an intensive quantity, and has the key property of being finite in any insulator but
divergent in metals: it provides therefore the sharp criterion needed to discriminate between
the two classes of material. The localization tensor has the nature of a quadratic spread, or
second cumulant moment; we borrow here notation due to SWM, and we call its elements
〈rαrβ〉c, where the subscript c stands for ‘cumulant’.

The original RS paper only provides an expression for the diagonal elements of the tensor,
which are sufficient to deal with high-symmetry materials. Inspired by equation (77), RS make
the definition

〈rαrα〉c = − 1

N

(
L

2π

)2

log |z(α)
N |2. (84)

The equality obviously holds in the thermodynamic limit, whereas the symbol = means 	 (to
leading order) if finite values of N and L are understood. In order to define the off-diagonal
elements, it is expedient to introduce the notation

z
(αβ)

N = 〈0(κ
(α))|0(κ

(β))〉 = 〈�0|Û (κ(β) − κ(α))|�0〉, (85)

using which the off-diagonal elements assume the form

〈rαrβ〉c = − 1

N

(
L

2π

)2

log
|z(α)

N ||z(β)

N |
|z(αβ)

N |
. (86)

2 Nc also equals M3, but we do not refer to M in the present section in order to avoid confusion with the vector M ,
having a completely different meaning.
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This expression was first published by Silvestrelli and Parrinello [20]; one can immediately
verify that for α = β it reduces to the RS expression of equation (84). It will be clear in the
following that the compact and elegant expressions of equations (84) and (86) enjoy the useful
properties which have been anticipated, and more.

The main ingredient in equation (84) is the modulus of z
(α)
N , the expectation value of the

many-body phase operator. We notice that the phase of this same z
(α)
N was used in equation (41)

to define the macroscopic polarization P of the sample. This leads to the basic idea that in
metals z

(α)
N goes to zero (fast enough with N ), the localization tensor, equation (84), diverges,

and P is ill defined. Starting from the components of P, it is expedient to define the first
cumulant moment as

Pα = eN

L3
〈rα〉c, (87)

again an intensive quantity whose meaning becomes transparent upon realizing that L3/N is
the volume per electron. Equation (41) yields then

〈rα〉c = 1

N

L

2π
Im log z

(α)
N . (88)

A glance to equations (84) and (88) is enough for it to be obvious that polarization and
localization are two aspects of the same phenomenon. This is indeed the main ‘philosophical’
claim of the RS paper.

Given the phenomenological link, outlined in the introduction, between macroscopic
polarization and the insulating state of matter, RS postulated that a finite value of 〈rαrβ〉c

is the essential characteristic of any insulator. Some anisotropic materials, such as graphite,
can be conducting/insulating according to the Cartesian directions; RS suggest in such cases
that the relevant tensor elements are divergent/finite.

The main RS postulate was corroborated in the original paper by two case studies: a
crystalline system of independent electrons, where the statement is analytically proved, and
a correlated one-dimensional model system, where the statement is numerically proved by
explicit computation. Both these cases are discussed later, section 6.

Two important questions were not answered by RS. Given that in any insulator the
localization tensor 〈rαrβ〉c is, at least in principle, a well-defined ground-state observable,
the first question is whether this can be measured, and by which kind of experiments. The
second question is whether 〈rαrβ〉c can be related in some way to dc conductivity, given that the
vanishing of the latter characterizes—in addition to macroscopic polarization—the insulating
state of matter. Both these questions were later answered by SWM, by the same unique token.

5.4. The work of Souza, Wilkens, and Martin

The tensor quantity which measures localization according to SWM coincides, in the
thermodynamic limit, with 〈rαrβ〉c defined by RS, although it is arrived at by means of rather
different algebra. The main result in the SWM paper is that 〈rαrβ〉c is indeed measurable: in fact
it can be expressed as a frequency integral of the real part of the conductivity, equation (94)
below, a quantity which is accessible to experiments. Furthermore, SWM argue that this
frequency integral diverges in any metal, thus providing a general proof of the main RS
postulate.

I have stressed before that 〈rαrβ〉c is a ground-state property, while conductivity is a
property of the excitations of the many-electron system. In fact the SWM result is a sum rule
of the fluctuation-dissipation kind, in the same class as those presented in section 4.1. Owing to
the sum rule, one has access to a ground-state property by actually performing a measurement
over the excited states.
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We are not following SWM in the presentation of their main result; instead, we prefer to
exploit the formalism, notation, and results developed throughout this review in order to prove
their major point. The quantity of interest is the frequency integral

Iαβ =
∫ ∞

0

dω

ω
Re σαβ(ω), (89)

and the issue is whether Iαβ is a finite or a divergent tensor. Since the integral converges at its
upper limit, the discussion focuses on the low-frequency behaviour of the integrand.

In a simple insulator—with a finite gap εg in the excitation spectrum—the real part of
the conductivity, equation (67), vanishes for ω < εg, and Iαβ obviously converges. For other
classes of more exotic insulators, with no gap in the excitation spectrum, the momentum
elements in equation (67) either vanish or go to zero fast enough with decreasing excitation
energies to ensure the vanishing of the dc conductivity characterizing the insulating state of
matter at zero temperature. Therefore, according to SWM, the integral Iαβ converges in any
insulator.

Starting from equation (67), Iαβ is cast as

Iαβ = πh̄e2

m2L3

∑
n
=0

′ 〈�0|P̂α|�n〉〈�n|P̂β |�0〉
(En − E0)2

= πh̄e2

m2L3

∑
n,n′ 
=0

′ 〈�0|P̂α|�n〉
En − E0

〈�n|�n′ 〉 〈�n′ |P̂β |�0〉
En′ − E0

.

(90)

From equation (37), we make the replacement

∑
n 
=0

′|�n〉 〈�n|P̂α|�0〉
En − E0

	 mL

2πh̄
(e−iγ (α)

N |0(κ
(α))〉 − |�0〉). (91)

Notice that equation (37) has been obtained under the hypothesis of a finite-gap insulator;
however, for a more general insulator where 1/(En −E0) might diverge in the thermodynamic
limit, such divergences are compensated by the matrix elements in the numerator, which must
go to zero fast enough to ensure insulating behaviour of equation (67). We thus get for any
insulator the finite tensor

Iαβ 	 e2

4πh̄L
(1 + |z(αβ)

N | − |z(α)
N | − |z(β)

N |) 	 − e2

4πh̄L
log

|z(α)
N ||z(β)

N |
|z(αβ)

N |
, (92)

where we have used equations (28) and (44), as well as

z
(αβ)

N = 〈�0|Û (κ(β) − κ(α))|�0〉 	 ei(γ (β)

N −γ
(α)
N )|z(αβ)

N |. (93)

Comparing with the localization tensor, equation (86), one immediately obtains the main SWM
result:

〈rαrβ〉c = h̄L3

πe2N

∫ ∞

0

dω

ω
Re σαβ(ω). (94)

In a simple finite-gap insulator the diagonal elements fulfil the inequality

〈rαrα〉c <
h̄L3

πe2εgN

∫ ∞

εg

dω

ω
Re σαα(ω) = h̄2

2mεg
, (95)

where the oscillator-strength sum rule has been used in the last equality. Equation (95) shows
that the larger the gap, the smaller the upper bound to the diagonal element of the localization
tensor; if the gap vanishes, there is no bound on it.
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6. Localization in selected systems

6.1. Band insulators

We consider here a crystalline system of independent electrons, with nb doubly occupied
bands. The diagonal element of the localization tensor, equation (84), can be written using
equation (50) as

〈rαrα〉c = − 2

N

(
L

2π

)2

log
∏

s

det S†(qs , qs + κ(α))S(qs , qs + κ(α)). (96)

This product, since it runs over all the M3 mesh points, is nonvanishing (see also below,
section 6.2).

In the thermodynamic limit, the expression in equation (96) becomes an integral over the
reciprocal cell (or equivalently over the Brillouin zone):

〈rαrα〉c = a3

nb(2π)3

∫
dq

( nb∑
n=1

〈
∂

∂qα

unq

∣∣∣∣ ∂

∂qα

unq

〉
−

nb∑
n,n′=1

〈
unq

∣∣∣∣ ∂

∂qα

un′q

〉 〈
∂

∂qα

un′q|unq

〉)
.

(97)

The proof is relatively straightforward, starting from equation (97) and discretizing both the
integral and the derivatives on the mesh defined in equation (10).

We have previously met in section 2.6 the same expression as in equation (97), and we
have discussed its meaning according to MV: if we exploit the gauge freedom in order to write
the ground-state wavefunction as the Slater determinant of optimally localized WFs, then in
the thermodynamic limit the spherical second moment of such WFs is, on average, larger than
the trace of our localization tensor, equations (18) and (20).

We emphasize, once more, that both equations (96) and (97) yield gauge-invariant
expressions, which only depend on the N -electron wavefunction �0, and not on the specific
choice of the orbitals: the equivalent expression given in equation (21) makes this feature
clear. It is worth noticing that in insulators the projector P(r, r′) decays exponentially with
|r − r′|; hence the integral over all space in equation (21) converges despite the occurrence of
the (unbound) position operator.

The nondiagonal elements 〈rαrβ〉c, equation (86), also go, in the M → ∞ limit, to the
same expression as in equation (19), although the proof is less straightforward. Besides the
trace, even the localization tensor itself bears some important meaning in the present case of
an insulating crystal of independent electrons. Suppose that, unlike MV, we exploit the gauge
freedom in order to write the ground-state wavefunction as the Slater determinant of orbitals
that are optimally localized only in a given direction, meaning that the average quadratic spread
in such direction is minimal. These orbitals have been called ‘hermaphrodite’ orbitals [23],
since they are Wannier-like in the chosen direction, and Bloch-like in the orthogonal ones.
It can be proved that the average quadratic spread of the optimally localized hermaphrodite
orbitals in the given direction is equal to the appropriate projection of the localization tensor
〈rαrβ〉c. Further discussion is provided in [23].

The localization tensor has recently been calculated from first principles—within
density-functional theory in the local-density approximation [27]—for several tetrahedrally
coordinated crystalline materials from the groups IV, III–V, and II–VI, having the diamond
and zinc-blende structure [23]. As explained in section 3.3, what is indeed computed is the
localization tensor of the noninteracting KS system; it is assumed that in this class of materials
such a tensor is a good approximation to the corresponding quantity for the real interacting
system. Since the materials are cubic, the tensor is indeed a scalar (multiple of the identity),
and will be referred to as the squared localization length 〈x2〉c.



R650 R Resta

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

experimental gap
theoretical gap

C
MgS

ZnSe
AlP

AlAsSi
GaAs

Ge

C
MgS

ZnSe AlP
AlAs

GaAs

Figure 5. Squared localization length versus the inverse direct gap (theoretical and experimental),
for several elemental and binary semiconductors. The inequality (95) is strongly verified. The
points corresponding to Si and Ge with the theoretical gaps are off the scale; after [23].

This quantity is plotted in figure 5 versus the rhs of the inequality (95), where for the
gap εg we have used both (i) the theoretical and (ii) the experimental values. In case (i) the
inequality arises from an exact sum rule and must be satisfied; we are therefore checking
the internal consistency of the calculations. Also, it may be noticed that the two members
of the inequality differ in general by a rather large factor. In case (ii) there is no a priori
guarantee that the inequality is verified, particularly given the fact that the experimental gap
is systematically larger than the KS one. Nonetheless, the localization length is obtained here
as a pure ground-state property, and it is well known that density-functional theory in the
local-density approximation provides a good representation of the ground state, though not of
the excitations. It is therefore interesting to verify that even for case (ii) the inequality (95) is
strongly verified for all the materials studied.

The squared localization length ranges roughly between 1 and 3 bohr2 for all the materials
considered, diamond being the most localized and germanium the most delocalized. The trend
is qualitatively expected, in agreement with SWM’s statement that ‘the larger the gap, the more
localized the electrons are’. However, inequality (95) only provides a bound, and indeed a few
materials show irregularities in their trend.

6.2. Band metals

We consider here a crystalline metal of independent electrons. The ground wavefunction
can still be written as a Slater determinant of Bloch orbitals, equation (11). But then, given
the presence of a Fermi surface, some qs of the mesh are not occupied. This has dramatic
consequences for the expectation value z

(α)
N , which indeed vanishes; hence the localization

tensor 〈rαrα〉c diverges and, by the same token, the macroscopic polarization is ill defined.
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Figure 6. Discrete q-vectors, equation (10), in the reciprocal cell in one dimension, where M = 14
has been chosen. Black circles correspond to occupied qs, and empty circles to unoccupied ones.
Top: insulator, with N = 2M (filled band). Bottom: metal, with N = M (half-filled band).

The algebra leading to the vanishing of z
(α)
N is best illustrated for the simple case of one

band in one dimension, whose discrete Bloch vectors, equation (10), are shown in figure 6 for
the case M = 14. The system is insulating if the number of electrons N equals 2M (filled
band, top sketch), and a metal if N = M (half-filled band, bottom sketch).

The large overlap matrix, equation (48), simplifies to

Sqs ,qs′ = 1

L

∫ L

0
dx ψ∗

qs
(x)ψqs′ (x)ei 2π

Ma
x, (98)

where the identity ψqM
(x) ≡ ψq0(x) is understood (the so-called periodic gauge). The elements

of S are nonzero whenever s = s ′ + 1. In the insulating case, owing to complete filling, both
s and s ′ run over all the M-values; for any given s, there is always one (and only one) s ′

such that the matrix element in equation (98) is nonzero. That means that in any row of the S-
matrix—whose size is M×M—there is one, and only one, nonvanishing element. Under these
circumstances, the determinant factors as a product of M nonzero numbers and is, therefore,
nonvanishing.

The metallic case is very different. Since not all the qs-vectors are occupied, the indices s

and s ′ run over a subset of the M-values (figure 6): the matrix S is of size M/2×M/2. There is
one of the two qs at the Fermi level for which the integrals in equation (98) are all vanishing, for
any occupied s ′. Therefore the matrix S has a row of zeros, and its determinant vanishes, even
at it finite M: as anticipated, the localization length is infinite and macroscopic polarization is
ill defined. The same proof can be obviously generalized to the three-dimensional multi-band
case, at the price of a somewhat heavier algebra.

It is interesting to address the divergence of the localization tensor in a metal (of
independent electrons) in an alternative way, focusing on the equivalent expression for 〈rαrβ〉c

given in equation (21). This expression is easily demonstrated starting from equation (97)
and using equation (15)—assuming therefore an insulating ground state. However, the same
expression as in equation (21) holds its formal validity in the metallic case as well, where it
diverges. To realize this, it is enough to imagine that the periodic potential is continuously
varied until the insulating system undergoes a band crossing (or touching) and therefore
becomes conducting. On the insulating side of the transition the localization tensor is a
continuous function of the periodic crystalline potential and equals the rhs of equation (21); at
the transition point and beyond—owing to the key SWM result—the lhs diverges and therefore
the rhs must diverge as well. It is straightforward to verify this divergence for the simplest
metal of all, namely, the free-electron gas, where the density matrix is known exactly in the
thermodynamic limit [55]:

P(r, r′) = 1

2
ρ(r, r′) = 3n0

2

j1(kF|r − r′|)
kF|r − r′| , (99)
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where n0 is the density, kF is the Fermi wavevector, and j1 is a Bessel function. Replacement
of equation (99) into (21) results in a diverging integral, thus confirming that our localization
tensor is formally infinite in this paradigmatic metal. Other, more realistic, metals feature this
same divergence owing to the weak (polynomial) decay of P(r, r′) for large |r − r′|, which
in turn arises from the sharpness of the Fermi surface in reciprocal space.

Finally, a warning is in order. It looks tempting to apply equation (21) even to the case
of a correlated system—either insulating or metallic—using the most general density matrix
in the form of equation (4), but this would be incorrect. Equation (21) only applies to a
system of independent electrons, while we have stressed above that in a correlated system the
expectation value of the many-body operator, equation (30), and hence our localization tensor,
is not a function of the one-body reduced density matrix.

6.3. Correlated electrons: a model system

SWM have proved that the localization tensor is finite in any insulator and diverges in any metal
(section 5.4). In the original RS paper, the issue is instead addressed by means of a correlated
model system, whose ground wavefunction is computed by exact Lanczos diagonalizations.
The same model was previously used in the literature [56,57] to represent an insulator having
a mixed ionic/covalent character. The model consists of a one-dimensional two-band Hubbard
Hamiltonian at half-filling, whose ground wavefunction is explicitly correlated. The strength of
the electron–electron interaction is measured by a single Hubbard parameter U . We simply call
zN the expectation value of the many-body operator, equation (27), in the one-dimensional case.
For present purposes, it is enough to study the centrosymmetric geometry: the wavefunction
is real, and whenever zN does not vanish, its phase is either 0 or π .

According to some very recent work [24, 58], the same model Hamiltonian [56, 57] as
was used by RS seems to have a very rich phase diagram, actually richer than suspected by
RS. Since the focus here is on localization features, and not on the model itself, I will neglect
other possible phases and I will only deal with the phase diagram as investigated by RS. As
a function of U , the behaviour is as follows: at small U the system is a band insulator, while
at a critical Uc it undergoes a transition to a Mott-like insulating phase. At the transition, the
phase jumps by π ; it turns out that this occurrence is the main fact signalling the transition
between the two, topologically distinct, insulating ground states. The phase of zN , divided by
π , is therefore a topological (integer) quantum number [59] which can be used as an order
parameter to identify the two phases of the system: these correspond to qualitatively different
organizations of the electrons in the ground-state wavefunction [57, 60].

In one dimension, equation (84) becomes

〈x2〉c = − 1

N

(
L

2π

)2

log |zN |2 = − N

(2πn0)2
log |zN |2, (100)

where n0 = N/L is the average density. What happens to the localization length as a
function of U? The answer is provided by figure 7, where we show the dimensionless
quantity D = −N log |zN |2 in the large-N limit. At U = 0 the system is noninteracting,
and the squared localization length 〈x2〉c coincides with the second cumulant moment of the
optimally localized WF of the occupied band. In the correlated case at U 
= 0, no Wannier
analysis can be performed; yet 〈x2〉c maintains its role as a global measure of the localization
of the electronic wavefunction as a whole. The localization length increases with U below
the transition, diverges at the transition point Uc, and becomes localized again in the highly
correlated regime, where in fact 〈x2〉c decreases with increasing U . Since the localization
length remains finite at all values of U different from Uc, the system is always insulating
except at a single point.
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Figure 7. The dimensionless quantity D = 4πn2
0〈x2〉c as a function of the electron–electron

interaction parameter U for the model system. At low values of U the system is a band insulator,
whereas at high values of U it is a Mott insulator. At the transition point the system is metallic and
the localization length diverges; after RS [18].

What about the transition point? According to the previously stated viewpoint, the
delocalized behaviour implies a metallic character of the many-electron system. Notice that
〈x2〉c is a pure ground-state property and apparently carries no information about the excitation
spectrum of the system. Yet RS have explicitly verified—by exploiting the metastability of
the Lanczos algorithm—that at the critical U -value there is indeed a level crossing. At the
transition value Uc the ground state is twice degenerate and the lowest-lying excitation (at
constant N ) has vanishing energy, as is appropriate for a metal.

7. Conclusions

An insulator is distinguished from a metal (at zero temperature) by its vanishing dc conductivity
and by its ability to sustain bulk macroscopic polarization. Both these features stem from a
qualitatively different organization of the electrons in their ground state: electrons are localized
in insulators and delocalized in metals. Such localization, however, is hidden in a rather subtle
way into the many-body ground wavefunction. The present review provides a comprehensive
survey of the modern approach to the problem: polarization, dc conductivity, and localization
are addressed and explained by means of a unified, and remarkably simple, theoretical scheme.

The ‘theory of the insulating state’ starts from a milestone paper by Kohn, which appeared
in 1964 [3]. Kohn argued that the electron localization is the cause of the vanishing of the
dc conductivity in any kind of insulator, and that such localization can be sharply defined via
the disconnectedness of the ground-state wavefunction (section 5.2). Substantial advances in
the theory of the insulating state came only 35 years later, starting with the RS paper. At the
root of the modern developments is the theory of macroscopic polarization, based on a Berry’s
phase, which since 1993 has revolutionized our view of the phenomenon. According to RS,
macroscopic polarization and electron localization are two aspects of the same phenomenon,
and they can be addressed by the same formal tool, namely, the many-body phase operator
(section 3.2), widely used throughout this review. The ground-state expectation value of this
operator is a dimensionless complex number which vanishes in metals and is finite in insulators:
in the latter case, the phase of this same number yields the macroscopic polarization. The
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picture was later completed by SWM, who provided the missing link between RS localization
and conductivity features. There is a direct relationship between the modern approach and
Kohn’s one: the many-body phase operator extracts in a very elegant and effective way the
main connectedness feature of the many-body wavefunction. This is very clear when looking
at the simple one-body case (section 5.1).

We have addressed here the most general condensed system: our compact formulation, in
fact, deals on the same basis with crystalline and disordered systems, as well as with correlated-
and independent-electron systems. The kind of localization discussed in this work is a global
property of the many-electron system as a whole, not a feature of the individual orbitals.

We have also applied the general many-body formulation to the simple band structure case
sketched in figure 2, i.e. specializing to a crystalline system of independent electrons. For such
a system, the ground wavefunction is a Slater determinant; a relevant issue is whether it can be
written as a determinant of localized one-particle orbitals. This issue, in fact, also discriminates
between insulators and metals. We have shown that in a band insulator (section 6.1) the ground
state can be written as a determinant of orbitals (WF) whose second moments are finite in the
thermodynamic limit, while in a band metal (section 6.2) this is impossible.

I have shown that electron localization in different insulators can be quantitatively
compared by means of a localization tensor, or second cumulant moment. This quantity
is a pure ground-state property, yet it is experimentally accessible by means of conductivity
experiments, i.e. actually measuring excited-state properties. This result, found by SWM,
arises from a fluctuation-dissipation sum rule.

Metals are qualitatively different from insulators in that the localization tensor diverges
therein. The theory, at its present stage, does not discriminate between normal metals and
superconductors: all behave in the same way as long as the localization tensor is considered.
An open issue is whether the present formalism can be modified or enhanced in order to even
discriminate between these cases, given that Berry’s phases have indeed been used on some
occasions to deal with the superconducting transition [61].

The modern theory of localization reviewed in this work is very recent. Besides the
analytical results, to date only a few published papers have provided actual computations.
Numerical implementations of this theory in selected case studies may have two different
aims: to demonstrate how the theory works or to exploit the theory for detecting the onset of
the metal–insulator transition in a given system. In the literature published so far [20–24], there
have been some studies of electron localization in correlated systems, while there are neither
studies of disordered systems, nor investigations of any relationship to Anderson localization.
However, the RS localization is expected to be applicable to such issues as well.
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